Respuesta :
Answer:
227 m/s
Explanation:
Kinetic energy formula:
- [tex]\displaystyle \text{KE} = \frac{1}{2} mv^2[/tex]
- where m = mass of the object (kg)
- and v = speed of the object (m/s)
Let's find the kinetic energy of the 145-g baseball moving at 31.0 m/s.
First convert the mass to kilograms:
- 145-g → 0.145 kg
Plug known values into the KE formula.
- [tex]\displaystyle \text{KE} = \frac{1}{2} (.145)(31.0)^2[/tex]
- [tex]\displaystyle \text{KE} = 69.6725 \ \text{J}[/tex]
Now we want to find how fast a 2.70-g ping pong ball must move in order to achieve a kinetic energy of 69.6725 J.
First convert the mass to kilograms:
- 2.70-g → 0.00270 kg
Plug known values into the KE formula.
- [tex]\displaystyle 69.6725 = \frac{1}{2} (.00270)v^2[/tex]
- [tex]\displaystyle \frac{2(69.6725)}{.00270} =v^2[/tex]
- [tex]57609.25926=v^2[/tex]
- [tex]v=227.1767137[/tex]
The ping-pong ball must move at a speed of 227 m/s to achieve the same kinetic energy as the baseball.