Respuesta :

Question:

Find numbers a and k so that x-2 is a factor of

[tex]f(x)=x^4-2ax^3+ax^2- x+k[/tex]

and

[tex]f(-1)=3[/tex]

Answer:

[tex]k = -2[/tex] and [tex]a=1[/tex]

Step-by-step explanation:

Given

[tex]f(x)=x^4-2ax^3+ax^2- x+k[/tex]

[tex]Factor:\ x - 4[/tex]

[tex]f(-1)=3[/tex]

Required

Find a and k

For [tex]f(-1)=3[/tex]

Substitute -1 for x

[tex]f(x)=x^4-2ax^3+ax^2- x+k[/tex]

[tex]f(-1) = (-1)^4 - 2a *(-1)^3 + a*(-1)^2 - (-1) + k[/tex]

[tex]f(-1) = 1 - 2a *-1 + a*1 +1 + k[/tex]

[tex]f(-1) = 1 +2a + a +1 + k[/tex]

[tex]f(-1) = 2 +3a + k[/tex]

Substitute 3 for f(-1)

[tex]3 = 2 +3a + k[/tex]

Collect Like Terms

[tex]3 - 2 = 3a + k[/tex]

[tex]1 = 3a + k[/tex]

Also:

If [tex]x - 2[/tex] is a factor, then

[tex]f(2) = 0[/tex]

Substitute 2 for x and 0 for f(x)

[tex]f(x)=x^4-2ax^3+ax^2- x+k[/tex]

[tex]0 = 2^4 - 2a * 2^3 + a * 2^2 - 2 + k[/tex]

[tex]0 = 16 - 2a * 8 + a * 4 - 2 + k[/tex]

[tex]0 = 16 - 16a + 4a - 2 + k[/tex]

[tex]0 = 16 - 12a - 2 + k[/tex]

Collect Like Terms

[tex]2 - 16 = - 12a + k[/tex]

[tex]-14 = k - 12a[/tex]

[tex]k = 12a - 14[/tex]

Substitute 12a - 14 for k in [tex]1 = 3a + k[/tex]

[tex]1 = 3a + 12a - 14[/tex]

[tex]1 = 15a - 14[/tex]

Collect Like Terms

[tex]15a = 1 + 14[/tex]

[tex]15a = 15[/tex]

Solve for a

[tex]a = \frac{15}{15}[/tex]

[tex]a=1[/tex]

Substitute 1 for a in [tex]k = 12a - 14[/tex]

[tex]k = 12 * 1 - 14[/tex]

[tex]k = 12 - 14[/tex]

[tex]k = -2[/tex]