Respuesta :

Complete Question

The complete question is shown on the first uploaded image

Answer:

The correct option is H

Step-by-step explanation:

From the question we are told that

   The equation is  [tex]\frac{\sqrt{1 - cos^2 (x)} }{sin(x)} + \frac{\sqrt{1 - sin^2 (x)} }{cos(x)}[/tex]    

    The domain for x  is  [tex]0 < x < \frac{\pi}{2}[/tex]

Gnerally the equation above is not continuous, when

       [tex]sin (x) = 0[/tex]

=>    [tex]x = 0[/tex]

And  when  [tex]cos(x) = 0[/tex]

           =>     [tex]x = \frac{\pi}{2}[/tex]

Generally  from trigonometry identity

        [tex]sin^2x + cos^2 x = 1[/tex]

So    

       [tex]sin^2 x = 1 - cos^2 (x)[/tex]

So

      [tex]cos^2 x = 1 - sin^2 (x)[/tex]    

=>     [tex]\frac{\sqrt{sin^2 (x)} }{sin(x)} + \frac{\sqrt{ cos^2 (x )} }{cos(x)}[/tex]    

=>     [tex]1 + 1[/tex]      

=>     [tex]2[/tex]  

Ver imagen okpalawalter8