Respuesta :
Answer:
Following are the solution to the given points:
Explanation:
[tex]Q= 5000 \frac{m^3}{day}\\\\ Y_i= 150 \frac{mg}{L}\\\\TSS = 350 \frac{mg}{L}\\\\xi=3500 \frac{mg}{l} \\\\D_t(HRT) = 4 \ hrs\\\\Q_w = 500 \frac{m^3}{day}[/tex]
[tex]tank \ volume = Q \times D_t(HRT)[/tex]
[tex]= 500 \times \frac{4}{24}\\\\= 833.33 m^3[/tex]
In point 1:
[tex]\frac{F}{M} = \frac{Q \ Y_i}{Q \ x_i} \\\\[/tex]
[tex]= \frac{5000 \times 150 \times 10^3}{833.33 \times 3500 \times 10^3}\\\\= 0.257[/tex]
Calculating (SRT):
[tex]= \frac{V X_i}{Q_w \ x_w} \\\\\to x_w[/tex] not defined
[tex]= 350 \ \frac{mg}{l}\\\\= \frac{833.33 \times 3500}{500 \times 350}\\\\= 16.67 \ days[/tex]
In point 2:
The regulated values now are less than the tank entry
In point 3:
[tex]\to SRT= 25 = \frac{V \ X_i}{ Q_w \ X_w}\\\\\to Q_w \ X_w = \frac{833.33 \times 3500 }{25}[/tex]
[tex]= 116666.2 \times 10^3 \ \frac{mg}{day}\\\\= 116.662 \times 10^3 \ \frac{mg}{day}[/tex]
Here the volume is fixed hence [tex]Q_w \ x_w[/tex] must be changed.