Respuesta :
Answer:
Point D: [tex](0,-4, 1 )[/tex]
d = √41
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Pre-Calculus
- Midpoint Formula [3D]: [tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}, \frac{z_1+z_2}{2} )[/tex]
- Distance Formula [3D]: [tex]d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Point A(1, 2, -1)
Point B(-3, -6, 2)
Point C(3, -2, 0)
Step 2: Find Point D
Simply plug in your coordinates B and C into the midpoint formula to find midpoint
- Substitute [MF]: [tex](\frac{-3+3}{2},\frac{-6-2}{2}, \frac{2+0}{2} )[/tex]
- Add/Subtract: [tex](\frac{0}{2},\frac{-8}{2}, \frac{2}{2} )[/tex]
- Divide: [tex](0,-4, 1 )[/tex]
Step 3: Find distance d
Simply plug in the 2 coordinates A and D into the distance formula to find distance d
- Substitute [DF]: [tex]d = \sqrt{(0-1)^2+(-4-2)^2+(1+1)^2}[/tex]
- Subtract/Add: [tex]d = \sqrt{(-1)^2+(-6)^2+(2)^2}[/tex]
- Exponents: [tex]d = \sqrt{1+36+4}[/tex]
- Add: [tex]d = \sqrt{41}[/tex]