Respuesta :

Answer:

[tex]r = \±\sqrt{14[/tex]

[tex]Product = -14[/tex]

Step-by-step explanation:

Given

[tex]\frac{1}{2x} = \frac{r - x}{7}[/tex]

Required

Find all product of real values that satisfy the equation

[tex]\frac{1}{2x} = \frac{r - x}{7}[/tex]

Cross multiply:

[tex]2x(r - x) = 7 * 1[/tex]

[tex]2xr - 2x^2 = 7[/tex]

Subtract 7 from both sides

[tex]2xr - 2x^2 -7= 7 -7[/tex]

[tex]2xr - 2x^2 -7= 0[/tex]

Reorder

[tex]- 2x^2+ 2xr -7= 0[/tex]

Multiply through by -1

[tex]2x^2 - 2xr +7= 0[/tex]

The above represents a quadratic equation and as such could take either of the following conditions.

(1) No real roots:

This possibility does not apply in this case as such, would not be considered.

(2) One real root

This is true if

[tex]b^2 - 4ac = 0[/tex]

For a quadratic equation

[tex]ax^2 + bx + c = 0[/tex]

By comparison with [tex]2x^2 - 2xr +7= 0[/tex]

[tex]a = 2[/tex]

[tex]b = -2r[/tex]

[tex]c =7[/tex]

Substitute these values in [tex]b^2 - 4ac = 0[/tex]

[tex](-2r)^2 - 4 * 2 * 7 = 0[/tex]

[tex]4r^2 - 56 = 0[/tex]

Add 56 to both sides

[tex]4r^2 - 56 + 56= 0 + 56[/tex]

[tex]4r^2 = 56[/tex]

Divide through by 4

[tex]r^2 = 14[/tex]

Take square roots

[tex]\sqrt{r^2} = \±\sqrt{14[/tex]

[tex]r = \±\sqrt{14[/tex]

Hence, the possible values of r are:

[tex]\sqrt{14[/tex] or [tex]-\sqrt{14[/tex]

and the product is:

[tex]Product = \sqrt{14} * -\sqrt{14}[/tex]

[tex]Product = -14[/tex]