Answer:
Following are the solution to the given points:
Explanation:
[tex]Q_1= 22-\frac{Q_2}{2}\\\\Q_2= 20-\frac{Q_1}{2}[/tex]
Replacing the [tex]Q_1[/tex] value in the equation mentioned above:
[tex]Q_2= 20- (\frac{(22-\frac{Q_2}{2})}{2})\\\\Q_2= 20-11+\frac{Q_2}{4}\\\\3\frac{Q_2}{4}=9\\\\Q_2= \frac{(9\times4)}{3}\\\\Q_2= 12[/tex]
Substituting the value of [tex]Q_2[/tex]:
[tex]Q_1= 22- \frac{Q_2}{2}\\\\Q_1= 22-6\\\\Q_1=16\\\\[/tex]
Now
[tex]P= 100-2(Q_1+Q_2)\\\\P= 100-2(16+12)\\\\P=100- 56\\\\P= 44\\\\[/tex]
In this firm a monopoly: (Q2 is 0 now)
Profit maximization is at MR=MC
as per the equation[tex]P= 100-2Q_1[/tex]
[tex]P.Q1= 100Q_1-2Q_1^{2}\\\\MR= 100-4Q_1\\\\MC= 12\\[/tex]
[tex]100-4Q_1=12\\\\4Q_1=88\\\\Q_1= 22\\\\and \ P= 100-2(22)= 56.[/tex]