Answer:
8.4 cm
Step-by-step explanation:
Given that:
A right angled triangle, let [tex]\triangle ABD[/tex]. Right angled at [tex]\angle A[/tex].
Altitude AC to the hypotenuse BD.
Length of side BC = 5 cm
Length of side CD = 11 cm
We have to find the value of shorter leg of triangle. i.e. side AB = ?
Using the concept of similarity, we can say the following:
[tex]\dfrac{AB}{BC} = \dfrac{BD}{AB}\\\Rightarrow AB^2=BC.BD\\\Rightarrow AB^2=5\times (5+11)\\\Rightarrow AB^2=5\times 16\\\Rightarrow AB^2=80\\\Rightarrow AB=\sqrt{80}\\\Rightarrow \bold{AB\approx 8.4\ cm}[/tex]
The length of shorter leg of the triangle = 8.4 cm