The altitude to the hypotenuse of a right triangle divides the hypotenuse into two segments measuring 11 cm and 5 cm. To the nearest tenth, what is the length of the shorter leg of the triangle?

Respuesta :

Answer:

8.4 cm

Step-by-step explanation:

Given that:

A right angled triangle, let [tex]\triangle ABD[/tex]. Right angled at [tex]\angle A[/tex].

Altitude AC to the hypotenuse BD.

Length of side BC = 5 cm

Length of side CD = 11 cm

We have to find the value of shorter leg of triangle. i.e. side AB = ?

Using the concept of similarity, we can say the following:

[tex]\dfrac{AB}{BC} = \dfrac{BD}{AB}\\\Rightarrow AB^2=BC.BD\\\Rightarrow AB^2=5\times (5+11)\\\Rightarrow AB^2=5\times 16\\\Rightarrow AB^2=80\\\Rightarrow AB=\sqrt{80}\\\Rightarrow \bold{AB\approx 8.4\ cm}[/tex]

The length of shorter leg of the triangle = 8.4 cm

Ver imagen isyllus

Otras preguntas