Respuesta :
for(Student Guide - Genetically Modified Foods Multimedia Presentation (PDF)
1.foods produced from organisms that have had changes introduced into their DNA using the methods of genetic engineering
2.soybean, maize, cotton, canola, and alfalfa
3.crops offer improved yields, enhanced nutritional value, longer shelf life, and resistance to drought, frost, or insect pests
4.To produce a GM plant, new DNA is transferred into plant cells. Usually, the cells are then grown in tissue culture where they develop into plants. ... Genetic modification of plants involves adding a specific stretch of DNA into the plant's genome, giving it new or different characteristics.
5.“GMOs have helped farmers reduce their environmental footprint by allowing them to use fewer inputs and enabling a shift to reduced tillage
Answer:
Genetically modified food
Genetically modified foods (GM foods), also known as genetically engineered foods (GE foods), or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using the methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.
Explanation:
1 Definition
2 History
3 Process
4 Crops
5 Derivative products
5.1 Corn starch and starch sugars, including syrups
6 Other uses
6.1 Animal feed
7 Health and safety
8 Regulation
9 Controversies
Definition
Genetically modified foods are foods produced from organisms that have had changes introduced into their DNA using the methods of genetic engineering as opposed to traditional cross breeding. In the U.S., the Department of Agriculture (USDA) and the Food and Drug Administration (FDA) favor the use of the term genetic engineering over genetic modification as being more precise; the USDA defines genetic modification to include "genetic engineering or other more traditional methods".
History
Human-directed genetic manipulation of food began with the domestication of plants and animals through artificial selection at about 10,500 to 10,100 BC. 1 The process of selective breeding, in which organisms with desired traits (and thus with the desired genes) are used to breed the next generation and organisms lacking the trait are not bred, is a precursor to the modern concept of genetic modification (GM).
Process
Creating genetically modified food is a multi-step process. The first step is to identify a useful gene from another organism that you would like to add. The gene can be taken from a cell or artificially synthesised, and then combined with other genetic elements, including a promoter and terminator region and a selectable marker. Then the genetic elements are inserted into the targets genome. DNA is generally inserted into animal cells using microinjection, where it can be injected through the cell's nuclear envelope directly into the nucleus, or through the use of viral vectors.
Crops
Genetically modified crops (GM crops) are genetically modified plants that are used in agriculture. The first crops developed were used for animal or human food and provide resistance to certain pests, diseases, environmental conditions, spoilage or chemical treatments (e.g. resistance to a herbicide). The second generation of crops aimed to improve the quality, often by altering the nutrient profile. Third generation genetically modified crops could be used for non-food purposes, including the production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.
Derivative products
Corn starch and starch sugars, including syrups
Starch or amylum is a polysaccharide produced by all green plants as an energy store. Pure starch is a white, tasteless and odourless powder. It consists of two types of molecules: the linear and helical amylose and the branched amylopectin.
Other uses
Animal feed
Livestock and poultry are raised on animal feed, much of which is composed of the leftovers from processing crops, including GM crops. For example, approximately 43% of a canola seed is oil. What remains after oil extraction is a meal that becomes an ingredient in animal feed and contains canola protein.
Health and safety
There is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, but that each GM food needs to be tested on a case-by-case basis before introduction. Nonetheless, members of the public are much less likely than scientists to perceive GM foods as safe. The legal and regulatory status of GM foods varies by country, with some nations banning or restricting them, and others permitting them with widely differing degrees of regulation.
Regulation
Government regulation of GMO development and release varies widely between countries. Marked differences separate GMO regulation in the U.S. and GMO regulation in the European Union. Regulation also varies depending on the intended product's use.
Controversies
The genetically modified foods controversy consists of a set of disputes over the use of food made from genetically modified crops. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, environmental and political activists and scientists. The major disagreements include whether GM foods can be safely consumed, harm the environment and/or are adequately tested and regulated.
Hope it helps! :)