Respuesta :
Answer:
Following are the solution to this question:
Step-by-step explanation:
Please find the complete question in the attached file
[tex]\to \frac{\tan x}{\sec x} \\\\\therefore \ \ \ \tan x= \frac{ \sin x}{ \cos x} \ \ \ \ and \ \ \ \ sec x = \frac{1 }{ \cos x}\\\\\to \frac{\frac{ \sin x}{ \cos x}}{ \frac{1 }{ \cos x}} \\\\\to \frac{ \sin x}{ \cos x} \times \frac{ \cos x}{1 }\\\\\to \sin x[/tex]
The numerator transformation value is = [tex]\sin x[/tex]
The denominator transformation value is= 1

After transformation, we get [tex]\frac{tan(x)}{sec(x)}=sin(x)[/tex]
Trigonometric identity:
We have to verify the identity [tex]\frac{tan(x)}{sec(x)}[/tex]
As we know that,
[tex]tan(x)=\frac{sin(x)}{cos(x)}\\\\sec(x)=\frac{1}{cos(x)}[/tex]
So that,
[tex]\frac{tan(x)}{sec(x)}=\frac{sin(x)}{cos(x)} *cos(x)\\\\\frac{tan(x)}{sec(x)}=\frac{sin(x)}{1}[/tex]
The numerator transform expression is [tex]sin(x)[/tex].
The denominator transform expression is 1.
Learn more about the trigonometric identity here:
https://brainly.com/question/7331447
Complete question: trigonometric expression is [tex]\frac{tan(x)}{sec(x)}[/tex]