Verify the identity. To verify the​ identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step.

Respuesta :

Answer:

Following are the solution to this question:

Step-by-step explanation:

Please find the complete question in the attached file

[tex]\to \frac{\tan x}{\sec x} \\\\\therefore \ \ \ \tan x= \frac{ \sin x}{ \cos x} \ \ \ \ and \ \ \ \ sec x = \frac{1 }{ \cos x}\\\\\to \frac{\frac{ \sin x}{ \cos x}}{ \frac{1 }{ \cos x}} \\\\\to \frac{ \sin x}{ \cos x} \times \frac{ \cos x}{1 }\\\\\to \sin x[/tex]

The numerator transformation value is = [tex]\sin x[/tex]

The denominator transformation value is= 1

Ver imagen codiepienagoya

After transformation, we get  [tex]\frac{tan(x)}{sec(x)}=sin(x)[/tex]

Trigonometric identity:

We have to verify the identity  [tex]\frac{tan(x)}{sec(x)}[/tex]

As we know that,

    [tex]tan(x)=\frac{sin(x)}{cos(x)}\\\\sec(x)=\frac{1}{cos(x)}[/tex]

So that,

    [tex]\frac{tan(x)}{sec(x)}=\frac{sin(x)}{cos(x)} *cos(x)\\\\\frac{tan(x)}{sec(x)}=\frac{sin(x)}{1}[/tex]

The numerator transform expression is [tex]sin(x)[/tex].

The denominator transform expression is 1.

Learn more about the trigonometric identity here:

https://brainly.com/question/7331447

Complete question: trigonometric expression is  [tex]\frac{tan(x)}{sec(x)}[/tex]