Answer: 0.655
Step-by-step explanation:
Let X be a random variable that represents percent of fat calories that a person in America consumes each day.
As per given , X is normally distributed with a mean [tex]\mu=36[/tex] and a standard deviation [tex]\sigma=10[/tex].
Sample size : n= 16
The probability that the average percent of fat calories consumed is more than 35:
[tex]P(\overline{X}>35)=P(\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}>\dfrac{35-36}{\dfrac{10}{\sqrt{16}}})\\\\=P(Z>\dfrac{-1}{\dfrac{10}{4}})\ \ \ [Z=\dfrac{\overline{X}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\=P(Z>\dfrac{-4}{10})\\\\=P(Z>-0.4)\\\\=P(Z<0.4)\ \ \ [P(Z>-z)=P(Z<z)]\\\\=0.655\ \ \ [\text{By p-value table}][/tex]
Hence, Required probability =0.655