Answer: the divergence of the vector fields at all points its defined is 0
Step-by-step explanation:
Given that;
div ( [x / (x²+ y² + z²)^1.5]i + [y / (x² + y² + z²)^1.5]j + [z / (x² + y² + z²)^1.5]k )
= d/dx [x / (x²+ y² + z²)^1.5] + d/dx [y / (x² + y² + z²)^1.5] + d/dx [z / (x² + y² + z²)^1.5]
= [1 / (x²+ y² + z²)^1.5] - [3x² / (x²+ y² + z²)^2.5] + [1 / (x²+ y² + z²)^1.5] - [3y² / (x²+ y² + z²)^2.5] + [1 / (x²+ y² + z²)^1.5] - [3z² / (x²+ y² + z²)^2.5]
= [3 / (x²+ y² + z²)^1.5] - [(3x² + 3y² +3z²) / (x²+ y² + z²)^2.5]
= [2 / (x²+ y² + z²)^1.5] - [3 / (x²+ y² + z²)^1.5] = 0
therefore the divergence of the vector fields at all points its defined is 0