Respuesta :

Answer: the divergence of the vector fields at all points its defined is 0

Step-by-step explanation:

Given that;

div ( [x / (x²+ y² + z²)^1.5]i  +  [y / (x² + y² + z²)^1.5]j  +  [z / (x² + y² + z²)^1.5]k )

= d/dx [x / (x²+ y² + z²)^1.5]  +  d/dx [y / (x² + y² + z²)^1.5] +  d/dx [z / (x² + y² + z²)^1.5]

= [1 / (x²+ y² + z²)^1.5] - [3x² / (x²+ y² + z²)^2.5] + [1 / (x²+ y² + z²)^1.5] - [3y² / (x²+ y² + z²)^2.5] + [1 / (x²+ y² + z²)^1.5] - [3z² / (x²+ y² + z²)^2.5]

= [3 / (x²+ y² + z²)^1.5]  -  [(3x² + 3y² +3z²) / (x²+ y² + z²)^2.5]

= [2 / (x²+ y² + z²)^1.5]   -   [3 / (x²+ y² + z²)^1.5]  = 0

therefore the divergence of the vector fields at all points its defined is 0