Answer: Lower limit = -0.05 and Upper limit = 0.025
Step-by-step explanation:
3-sigma , p chart control limits:
Lower limit = [tex]p-3\sqrt{\dfrac{p(1-p)}{n}}[/tex]
Upper limit = [tex]p+3\sqrt{\dfrac{p(1-p)}{n}}[/tex] , where n= sample size .
Given: p= 0.01 , n= 400
Lower limit = [tex]0.01-3\sqrt{\dfrac{0.01(1-0.01)}{400}}[/tex]
[tex]=0.01-3\sqrt{0.00002475}\\\\= 0.01-3(0.005)=-0.05[/tex]
Upper limit= [tex]0.01+3\sqrt{\dfrac{0.01(1-0.01)}{400}}[/tex]
[tex]=0.01+3\sqrt{0.00002475}\\\\= 0.01+3(0.005)=0.025[/tex]
hence, Lower limit = -0.05 and Upper limit = 0.025