Respuesta :

Answer:

Step-by-step explanation:

Base area =[tex]x^2[/tex]

side area=[tex]h*x[/tex]

Volume=[tex]x^2*h[/tex]=14

Surface area =[tex]4hx+2x^2[/tex]

upon substituting [tex]h=14/x^2[/tex]

surface area = [tex]4*\frac{14}{x^2}*x+2x^2[/tex]

upon differentiating and solving we get  f"([tex]\sqrt[3]{14\\}[/tex]) >0 proves that this point is of minima

hence, dimensions are

[tex]x=\sqrt[3]{14}[/tex] ,h=[tex]\sqrt[3]{14}[/tex]