1) Statisticians always prefer larger samples sizes to small ones. Describe the effect of increasing the size of a sample (the number of participants in an experiment) from 25 to 100 on the following, assuming the mean and standard deviations of the samples remain constant: (6 pts) a. How would the margin of error of a 95% confidence interval change

Respuesta :

Answer:

The margin of error reduces to half of it original size

Step-by-step explanation:

From the question we are told the confidence level is  95% , hence the level of significance is    

      [tex]\alpha = (100 - 95 ) \%[/tex]

=>   [tex]\alpha = 0.05[/tex]

Generally from the normal distribution table the critical value  of  [tex]\frac{\alpha }{2}[/tex] is  

   [tex]Z_{\frac{\alpha }{2} } =  1.96[/tex]

Generally the margin of error is mathematically represented as  

      [tex]E = Z_{\frac{\alpha }{2} } *  \frac{\sigma }{\sqrt{n} }[/tex]

Let assume the standard deviation is  [tex]\sigma = 0.4[/tex]

When sample size is  n  = 25

       [tex]E = 1.96 *  \frac{0.4 }{\sqrt{25} }[/tex]

        [tex]E =0.1568[/tex]

When sample size is  n  = 100

       [tex]E_1 = 1.96 *  \frac{0.4 }{\sqrt{100} }[/tex]

        [tex]E_1 = 0.0784 [/tex]        

So

     [tex]\frac{E_1}{E} = \frac{0.0784}{0.1568} = \frac{1}{2}[/tex]

Hence the margin of error reduces to half of it original size