Five different companies (G, J, S, O, U) compete each year to be the sole supplier of relays to a major automobile manufacturer. Supplier G J S O U probability .15 .04 .01 .55 .25 Given that suppliers O and U are both ultimately not chosen, what is the probability that supplier S will be chosen

Respuesta :

Answer:

The probability is [tex]P(S | (O ,U)' ) = 0.05[/tex]

Step-by-step explanation:

From the question we are told that

  The probability of each company to be chosen is

            Supplier               G           J           S           O             U

            Probability           0.15     0.04     0.01       0.55       0.25

Generally the probability that company  G , J  ,  S are chosen is  

       [tex]P(G , J , S ) = 0.15 + 0.04 + 0.01[/tex]

=>    [tex]P(G , J , S ) = 0.20[/tex]

Generally the probability that company  O, U are chosen is  

      [tex]P(O, U ) = 0.55+ 0.25[/tex]

=>   [tex]P(O, U ) = 0.80[/tex]

Generally  the probability that supplier S will be chosen given that suppliers O and U are both ultimately not chosen is mathematically represented as

     [tex]P(S | (O ,U)' ) = \frac{ P(S \ n \ (O , U)' )}{ P((O, U)')}[/tex]

    [tex]P((O, U)' = 1 - P(O , U)[/tex]    

    [tex]P((O, U)' = 1 - 0.8[/tex]    

   [tex]P((O, U)' =0.2[/tex]

And  

     [tex]P(S \ n \ (O , U)' ) = P(S) = 0.01[/tex]

=>   [tex]P(S | (O ,U)' ) = \frac{ 0.01 }{ 0.2}[/tex]

=>   [tex]P(S | (O ,U)' ) = 0.05[/tex]