Respuesta :

Answer:

Step-by-step explanation:

From the figure attached,

Point X is the midpoint of line AC.

Since coordinates of the midpoint of the segment joining endpoints [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given by,

[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]

Therefore, coordinates of the point X will be,

= [tex](\frac{0+2a}{2},\frac{2a+0}{2})[/tex]

= (a, a)

From triangle AXB,

Length of AB = 2a

Length of AX = [tex]\sqrt{(a-0)^2+(a-2a)^2}[/tex]

                      = [tex]a\sqrt{2}[/tex]

Length of BX = [tex]\sqrt{(a-0)^2+(a-0)^2}[/tex]

                      = [tex]a\sqrt{2}[/tex]

Length of AX = BX = [tex]a\sqrt{2}[/tex]

Therefore, triangle AXB is an isosceles triangle.