If A= arcsin(-4/5) in Quadrant IV and B=arctan(5/12) in Quadrant III, what is the values of tan(arcsin(-4/5)+arctan(5/12))? ASAP please...

If A arcsin45 in Quadrant IV and Barctan512 in Quadrant III what is the values of tanarcsin45arctan512 ASAP please class=

Respuesta :

Answer:

-33/56

Step-by-step explanation:

suppose: A,B are the 2 angles of a triangle

we have: A = arcsin[tex]\frac{-4}{5}[/tex]

               B = arctan [tex]\frac{5}{12}[/tex]

=> sin A = [tex]\frac{-4}{5}[/tex] => cos A = [tex]\sqrt{1-\frac{(-4)^{2} }{5^{2} } } =\frac{3}{5}[/tex] (because A is in quadrant IV)

    tan B = [tex]\frac{5}{12}[/tex]

have:

[tex]1+ cot^{2}B=\frac{1}{sin^{2}B } => 1+\frac{1}{tan^{2} B}=\frac{1}{sin^{2}B } \\=> 1+\frac{1}{\frac{5^{2} }{12^{2} } } =\frac{1}{sin^{2}B }\\ => sin^{2}B=\frac{25}{169}[/tex]

because B is in quadrant III => [tex]sin B=-\sqrt{\frac{25}{169} }=\frac{-5}{13}=>cosB=-\sqrt{1-\frac{5^{2} }{13^{2} } }=\frac{-12}{13}[/tex]

tan(arcsin(-4/5)+arctan(5/12)) = tan( A + B)

but A,B are the 2 angles of a triangle => tan(A + B) = [tex]\frac{sin(A+B)}{cos(A+B)}[/tex]

have: sin(A+B) = sinA.cosB + cosA.sinB = [tex]\frac{-4}{5}.\frac{-12}{13} +\frac{3}{5}.\frac{-5}{13}=\frac{33}{65}[/tex]

cos(A + B) = cosA.cosB - sinA.sinB =[tex]\frac{3}{5}.\frac{-12}{13}-\frac{-4}{5}.\frac{-5}{13}=\frac{-56}{65}[/tex]

=> tan(A + B) = [tex]\frac{33}{65}:\frac{-56}{65}=\frac{-33}{56}[/tex]

Answer:

pie/6

Explaniation:

just took the test on k12