Respuesta :
sin^2(x) + cos^2(x) = 1
cosec(x) = 1/sin(x), so divide by sin^2(x):
1 + cot^2(x) = cosec^2(x)
cot^2(x) = cosec^2(x) - 1
= (cosec(x) - 1)(cosec(x) + 1).
If we multiply top and bottom fraction by (cosec(x) + 1)
(cosec(x) + 1) tan^2(x) / (cosec(x) - 1)(cosec(x) + 1)
= (cosec(x) + 1) tan^2(x) / cot^2(x).
Now tan(x)
=1/cot(x) so tan^2(x)
=1/cot^2(x)
(cosec(x) + 1) tan^2(x) tan^2(x
= (cosec(x) + 1) tan^4(x) .
(cosec(x) + 1) tan^4(x).
cosec(x) = 1/sin(x), so divide by sin^2(x):
1 + cot^2(x) = cosec^2(x)
cot^2(x) = cosec^2(x) - 1
= (cosec(x) - 1)(cosec(x) + 1).
If we multiply top and bottom fraction by (cosec(x) + 1)
(cosec(x) + 1) tan^2(x) / (cosec(x) - 1)(cosec(x) + 1)
= (cosec(x) + 1) tan^2(x) / cot^2(x).
Now tan(x)
=1/cot(x) so tan^2(x)
=1/cot^2(x)
(cosec(x) + 1) tan^2(x) tan^2(x
= (cosec(x) + 1) tan^4(x) .
(cosec(x) + 1) tan^4(x).
[tex] \frac{tan2x}{cscx+1}* \frac{cscx-1}{cscx - 1} = \\ \frac{tan2x(cscx-1)}{csc^{2} x-1} [/tex]
csc² x - 1 = 1/sin²x - 1 = (1 - sin² x ) / sin² x = cos² x / sin² x = cot²x
... = [tex] \frac{tan2x(cscx-1)}{cot ^{2} x} [/tex]=
= tan 2 x ( csc x - 1 ) tan² x
csc² x - 1 = 1/sin²x - 1 = (1 - sin² x ) / sin² x = cos² x / sin² x = cot²x
... = [tex] \frac{tan2x(cscx-1)}{cot ^{2} x} [/tex]=
= tan 2 x ( csc x - 1 ) tan² x