Respuesta :

Given:

Consider the expression is

[tex]\log_63+\log_68-\log_64[/tex]

To find:

The value of given expression.

Solution:

We have,

[tex]\log_63+\log_68-\log_64[/tex]

Using properties of logarithm, we get

[tex]=\log_6(3\times 8)-\log_64[/tex]       [tex][\because \log_am+\log_an=\log_amn][/tex]

[tex]=\log_6(24)-\log_64[/tex]

[tex]=\log_6\left( \dfrac{24}{4}\right)[/tex]       [tex][\because \log_am-\log_an=\log_a\dfrac{m}{n}][/tex]

[tex]=\log_66[/tex]

[tex]=1[/tex]                    [tex][\because \log_aa=1][/tex]

Therefore, the value of given expression is 1.

(C) 1 is the correct answer.