Respuesta :

log3x3247 = e
ln 3247 = 3x 3 logxe = 3247

ln 3x = 3247
option B is right 
hope this helps

Answer:

Option B - ln 3247 = 3x

Step-by-step explanation:

We have given that : Equation =  [tex]e^{3x} =3247[/tex]

To find : The logarithmic form of the given equation

Solution : [tex]e^{3x} =3247[/tex]

Taking 'ln' both side (ln= natural log)

[tex]ln(e^{3x}) =ln(3247)[/tex]  .........(1)

∵ Logarithm rule -   [tex]ln(e^x)= x[/tex]

∴   [tex]ln(e^{3x})= 3x[/tex]

Now we put back in equation (1) we get,

[tex]3x =ln(3247)[/tex]

or ln 3247=3x

Therefore, option B is correct