Respuesta :
log3x3247 = e
ln 3247 = 3x 3 logxe = 3247
ln 3x = 3247
option B is right
hope this helps
ln 3247 = 3x 3 logxe = 3247
ln 3x = 3247
option B is right
hope this helps
Answer:
Option B - ln 3247 = 3x
Step-by-step explanation:
We have given that : Equation = [tex]e^{3x} =3247[/tex]
To find : The logarithmic form of the given equation
Solution : [tex]e^{3x} =3247[/tex]
Taking 'ln' both side (ln= natural log)
[tex]ln(e^{3x}) =ln(3247)[/tex] .........(1)
∵ Logarithm rule - [tex]ln(e^x)= x[/tex]
∴ [tex]ln(e^{3x})= 3x[/tex]
Now we put back in equation (1) we get,
[tex]3x =ln(3247)[/tex]
or ln 3247=3x
Therefore, option B is correct