4. The time needed to complete the final exam in statistics at CAU is normally distributed with a mean of 90 minutes and a standard deviation of 10 minutes.What is the probability that the exam will be completed in one hour or less

Respuesta :

Answer:

The value is  [tex]P(X \le 60 ) = 0.00135[/tex]  

Step-by-step explanation:

From the question we are told that

   The mean is  [tex]\mu = 90 \ minutes[/tex]

   The standard deviation is  [tex]\sigma = 10[/tex]

Generally  1 hours =  60  minutes

  Generally the probability that the exam will be completed in one hour or less is  

     [tex]P(X \le 60 ) = 1 - P(X > 60 )[/tex]

Here

     [tex]P(X > 60 ) = P( \frac{ X - \mu }{ \sigma } > \frac{ 60 - 90 }{ 10 } )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

     [tex]P(X > 60 ) = P( Z> -3 )[/tex]

From the z -distribution table the probability of  ( Z> -3  )

      [tex]P( Z> -3 ) = 0.99865[/tex]

[tex]P(X > 60 ) = 0.99865[/tex]

=>   [tex]P(X \le 60 ) = 1 - 0.99865[/tex]

=>   [tex]P(X \le 60 ) = 0.00135[/tex]