Respuesta :

Answer:

The dimensions of the rectangle are x = 36.48 m and  y = 36.48 m

Step-by-step explanation:

Let the sides of the rectangle be x and y

Objective function is given by;

F = 2(x + y)

F = 2x + 2y

The area of the rectangle is given by;

xy = 1331

y = 1331 / x

Substitute in the value of y in objective function;

[tex]F = 2x + 2y\\\\F = 2x + 2(\frac{1331}{x} )\\\\F = 2x + \frac{2662}{x}\\\\[/tex]

Determine the derivative of the function;

[tex]F' = 2 - \frac{2662}{x^2}[/tex]

Find the critical points;

F' = 0

[tex]2 - \frac{2662}{x^2} = 0\\\\\frac{2662}{x^2} = 2\\\\x^2 = \frac{2662}{2} \\\\x^2 = 1331\\\\x =\sqrt{1331}\\\\ x = 36.48 \ m[/tex]

Take the second derivative of the function

[tex]F'' = \frac{5324}{x^3}\\\\ \frac{5324}{x^3} >0\\\\thus, the \ perimeter \ will \ be \ minimum \ at \ x = 36.48[/tex]

Determine the second dimension;

y = 1331 / x

y = 1331 / 36.48

y = 36.48m

Therefore, the dimensions of the rectangle is x = y = 36.48 m

The perimeter of the rectangle is the sum of its dimensions

The dimensions that minimize the perimeter are 36.5, 36.5

The area is given as:

[tex]\mathbf{A = 1331}[/tex]

Let the dimension be x and y.

So, we have:

[tex]\mathbf{A = xy = 1331}[/tex]

Make x the subject

[tex]\mathbf{x = \frac{1331}{y}}[/tex]

The perimeter is calculated as:

[tex]\mathbf{P = 2(x + y)}[/tex]

Substitute [tex]\mathbf{x = \frac{1331}{y}}[/tex]

[tex]\mathbf{P = 2(\frac{1331}{y} + y)}[/tex]

Expand

[tex]\mathbf{P = \frac{2662}{y} + 2y}[/tex]

Differentiate

[tex]\mathbf{P' = -\frac{2662}{y^2} + 2}[/tex]

Set to 0

[tex]\mathbf{ -\frac{2662}{y^2} + 2 = 0}[/tex]

Rewrite as:

[tex]\mathbf{ -\frac{2662}{y^2} = -2}[/tex]

Divide both sides by -1

[tex]\mathbf{ \frac{2662}{y^2} = 2}[/tex]

Multiply y^2

[tex]\mathbf{2662 = 2y^2}[/tex]

Divide by 2

[tex]\mathbf{1331 = y^2}[/tex]

Take square roots of both sides

[tex]\mathbf{y = \sqrt{1331}}[/tex]

[tex]\mathbf{y = 36.5}[/tex]

Substitute [tex]\mathbf{y = \sqrt{1331}}[/tex] in [tex]\mathbf{x = \frac{1331}{y}}[/tex]

[tex]\mathbf{x = \frac{1331}{\sqrt{1331}}}[/tex]

[tex]\mathbf{x = \sqrt{1331}}[/tex]

[tex]\mathbf{x = 36.5}[/tex]

Hence, the dimensions that minimize the perimeter are 36.5, 36.5

Read more about perimeters at:

https://brainly.com/question/6465134