Scores of 50 college students who have taken a statistics test has a mean of 82 and a standard deviation of 5. Construct a 99 % confidence interval for the mean score. Also, report the critical value LaTeX: z_cz c corresponding to a confidence level of c

Respuesta :

Answer: (80.1786, 83.8214)

Step-by-step explanation:

Confidence interval for population mean is given by :-

[tex]\overline{x}\pm z_c\dfrac{\sigma}{\sqrt{n}}[/tex] , where [tex]\overline{x}[/tex] = Sample mean , n= sample size , [tex]\sigma[/tex] = standard deviation, [tex]z_c[/tex] = critical z-value.

Given: n= 50,  [tex]\overline{x}= 82[/tex] , [tex]\sigma=5[/tex]

Critical z-value for 99% confidence level = 2.576

Now, a 99 % confidence interval for the mean:

[tex]82\pm(2.576)\dfrac{5}{\sqrt{50}}\\\\=82\pm(2.576)(0.70710)\\\\=82\pm1.8215\\\\=(82-1.8214,\ 82+1.8214)\\\\=(80.1786,\ 83.8214)[/tex]

Hence, required 99% confidence interval = (80.1786, 83.8214)