Answer:
P(X>26)=0.4721
Step-by-step explanation:
[tex]Mean = \mu = 25[/tex]
Standard deviation = [tex]\sigma = 14[/tex]
No. of observations = n = 49
We are supposed to find[tex]P(\bar{X} > 26)[/tex]
[tex]Z = \frac{x-\mu}{\sigma}\\Z=\frac{26-25}{14}\\Z=0.0714[/tex]
Refer the Z table for p value
P(X<26)=0.5279
P(X>26)=1-P(X<26)=1-0.5279=0.4721
Hence P(X>26)=0.4721