Which product of prime polynomials is equivalent to 36x3 – 15x2 – 6x?
a.x(3x – 2)(4x 1)
b.3x(3x – 2)(4x 1)
c.3(x2 1)(4x – 1)
d.3(x2 1)(4x 1)

Respuesta :

The product of prime polynomials is equivalent to 36x3 – 15x2 – 6x is letter B which is 3x(3x – 2)(4x 1). Below is the solution. 

3x(3x - 2) (4x + 1)
= 9x2 - 6x (4x + 1)
= 36x3 + 9x2 + -  24x2 - 6x
= 36x3 - 15x2 - 6x
       

Answer:

Option b.3x(3x – 2)(4x 1)

Explanation:

Let's look at the expression for a while:

[tex]36x^{3} - 15x^{2} - 6x[/tex]

The common factor is 3x.

Therefore, factoring 3x gives:

[tex]3x(12x^{2} - 5x-2)[/tex]

factorizing the quadratic expression in the brackets gives:

[tex]3x (12x^{2} -8x+3x-2)\\= 3x [4x(3x-2)+1(3x-2)]\\= 3x(4x+1)(3x-2)\\=3x (3x-2)(4x+1)[/tex]

This is equivalent to option B