To multiply a monomial by a polynomial, use the (blank) Property. Using this property, the product of (2k2 – 7k + 3) and 4k is

Respuesta :

u would use the distributive property which states a(b + c) = ab + ac, or in this case a(b + c + d) = ab + ac + ad

4k (2k^2 - 7k + 3) = 8k^3 - 28k^2 + 12k

Answer: To multiply a monomial by a polynomial, use the distributive property .

The product of [tex](2k^2-7k + 3) \ and \ 4k[/tex] is [tex]8k^3-28k^2+12k[/tex]

Step-by-step explanation:

The given  polynomial and a monomial are  [tex](2k^2-7k + 3) \ and \ 4k[/tex].

To find the product of the given expressions we use distributive property which says that [tex](b+c)a=ba+ca[/tex]

Now,

[tex](2k^2-7k+3)4k=2k^2\cdot 4k-7k\cdot4k+3\cdot4k\\\\=8k^{2+1}-28k^{1+1}+12k...........[\text{by law of exponent}a^m*a^n=a^{m+n}]\\=8k^3-28k^2+12k[/tex]