Respuesta :
s(x) = 2 - x^2
t(x) = 3x
(s o t)(x) = s(t(x)) = 2 - (3x)^2 = 2 - 9x^2
(s o t)(-7) = 2 - 9(-7)^2 = 2 - 9(49) = 2 - 441 = -439
t(x) = 3x
(s o t)(x) = s(t(x)) = 2 - (3x)^2 = 2 - 9x^2
(s o t)(-7) = 2 - 9(-7)^2 = 2 - 9(49) = 2 - 441 = -439
Answer: a. -439
Step-by-step explanation:
Given: [tex]s(x)=2-x^2\text{ and }t(x)=3x[/tex]
Now, the composite function is given by :
[tex]s\circ t(x)\\\\=s(t(x))\\\\=s(3x)\\\\=2-(3x)^2\\\\=2-9x^2[/tex]
Now, put the value of x = -7, we get
[tex]s\circ t(-7)\\\\=s(t(-7))\\\\=2-9(-7)^2\\\\=2-9(49)\\\\=−439[/tex]
Hence the value equivalent to [tex]s\circ t(-7)\text{ is }−439[/tex].