Respuesta :

Answer:

A

Step-by-step explanation:

Recall that if we are given fractional exponents, we can use the following property:

[tex]\displaystyle x^{ {}^{a}\!/\! {}_{b}} = \sqrt[b]{x^a}[/tex]

We are given the expression:

[tex]\displaystyle (3p^3q)^{ {}^{3}\!/\! {}_{4} }[/tex]

Use the above property, this yields:

[tex]=\sqrt[4]{(3p^3q)^3}[/tex]

Using the power of a power property, we can simplify this to:

[tex]=\sqrt[4]{(3^3)(p^3)^3(q)^3}[/tex]

Simplify:

[tex]=\sqrt[4]{27p^9q^3}[/tex]

In conclusion, our answer is A.