Answer:
[tex]V_{sm}=475.4\ ft^3[/tex]
Step-by-step explanation:
Hemisphere
It's defined as half of a sphere. The volume of a sphere is:
[tex]\displaystyle V_s=\frac{4}{3}\pi r^3[/tex]
Thus, the volume of a semisphere is half of that:
[tex]\displaystyle V_{sm}=\frac{2}{3}\pi r^3[/tex]
We know the radius is r=6.1 ft, thus:
[tex]\displaystyle V_{sm}=\frac{2}{3}\pi\cdot (6.1)^3[/tex]
[tex]V_{sm}=475.38789\ ft^3[/tex]
Rounded to the nearest tenth:
[tex]\boxed{V_{sm}=475.4\ ft^3}[/tex]