Answer:
The answer is "75,000"
Explanation:
Initial Price = 3000
Sales price=15000
Time= 30 years
[tex]\to 15000= 3000 \times (1+r)^{30} \\\\\to \frac{15000}{3000 }= (1+r)^{30}\\\\\to 5= (1+r)^{30}\\\\\to 5^{\frac{1}{30}}= (1+r)^{30 \times \frac{1}{30}}\\\\\to 5^{\frac{1}{30}}= (1+r)^{1}\\\\\to 5^{0.0333333333}= (1+r)^{1}\\\\\to 1.05511306= (1+r)\\\\\to 1.05511306-1=r\\\\\to r= .05511306\\\\\to r \% = 05511306 \times 100\\\\\to r \% = 5.511306\\\\\to \text{The next 30 years' estimated price :}\\\\[/tex]
[tex]\to 15000 \times (1+ 5.511306 \%)^{30}\\\\\to 15000 \times (1+ \frac{5.511306}{100})^{30}\\\\ \to 15000 \times (1+ 0.05511306)^{30}\\\\ \to 15000 \times (1.05511306)^{30}\\\\ \to 15000 \times 4.9999995\\\\ \to 74,999.9925\\\\\to \bold{75,000}[/tex]