Respuesta :
Answer:
________________________________
[tex]step\:1[/tex]
[tex] \frac{1}{ \sqrt{3} - \sqrt{2} } [/tex]
write the equation
________________________________
[tex]step\:2[/tex]
[tex] \frac{1 \times ( \sqrt{3} + \sqrt{2}) }{ (\sqrt{3} - \sqrt{2} ) \times (\sqrt{3} + \sqrt{2}) } [/tex]
multiply both numerator and denominator by √3+√2
________________________________
[tex]step\:3[/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{ ( 3 ) - ( 2 ) } [/tex]
after multiplying numerator with √3+√2 we get→√3+√2
after multiplying denominator we get 3-2
________________________________
[tex]step\:4[/tex]
[tex] \frac{ \sqrt{3} + \sqrt{2} }{1} [/tex]
after subtracting 3 with 2 we get →1
________________________________
hence denominater is rationalized✓
hope it helped you:)
Answer:
√3 + √2
Step-by-step explanation:
The best approach to this problem would be by multiplying the denominator ad numerator by the denominator's conjugate;
1(√3 + √2) / (√3 - √2)(√3 + √2)
= (√3 + √2) / (√3)^2 - (√2)^2
= √3 + √2 / 3 - 2
= √3 + √2 / 1 = √3 + √2
We now have a denominator of 1, which is rationalized. The solution would be √3 + √2.