Respuesta :

Answer:

________________________________

[tex]step\:1[/tex]

[tex] \frac{1}{ \sqrt{3} - \sqrt{2} } [/tex]

write the equation

________________________________

[tex]step\:2[/tex]

[tex] \frac{1 \times ( \sqrt{3} + \sqrt{2}) }{ (\sqrt{3} - \sqrt{2} ) \times (\sqrt{3} + \sqrt{2}) } [/tex]

multiply both numerator and denominator by √3+√2

________________________________

[tex]step\:3[/tex]

[tex] \frac{ \sqrt{3} + \sqrt{2} }{ ( 3 ) - ( 2 ) } [/tex]

after multiplying numerator with √3+√2 we get→√3+√2

after multiplying denominator we get 3-2

________________________________

[tex]step\:4[/tex]

[tex] \frac{ \sqrt{3} + \sqrt{2} }{1} [/tex]

after subtracting 3 with 2 we get →1

________________________________

hence denominater is rationalized✓

hope it helped you:)

Answer:

√3 + √2

Step-by-step explanation:

The best approach to this problem would be by multiplying the denominator ad numerator by the denominator's conjugate;

1(√3 + √2) / (√3 - √2)(√3 + √2)

= (√3 + √2) / (√3)^2 - (√2)^2

= √3 + √2 / 3 - 2

= √3 + √2 / 1 = √3 + √2

We now have a denominator of 1, which is rationalized. The solution would be √3 + √2.