Per:
Homework 4: Angle Addition Postulate
** This is a 2-page document! **
2
3
1. Use the diagram below to complete each part.
a) Name the vertex of 24.
D
1
b) Name the sides of 21.
5 B
c) Write another name for 25.
E 4
d) Classify each angle:
F
ZFBC:
ZEBE:
ZABC:
g) Name an angle bisector.
• BF I AC
h) If mZEBD = 36° and mZDBC = 108°, find mZEBC.
i) If mZEBF = 117°, find mZABE.
2. If mZMKL = 83', mZJKL = 127", and
3. If mZEFH = (5x + 1), m_HFG = 62, and
mZJKM = 19% - 10)”, find the value of x.
mZEFG = (18x + 11), find each measure.
А
M1
5H

Per Homework 4 Angle Addition Postulate This is a 2page document 2 3 1 Use the diagram below to complete each part a Name the vertex of 24 D 1 b Name the sides class=

Respuesta :

Answer/Step-by-step explanation:

a. Vertex of <4 is the endpoint where the 2 rays meet to form <4.

Vertex of <4 is point B.

b. Sides of <1 are rays BD and BC.

c. Another name for <5 is <DBE.

d. <FBC is a right angle. (BF meets AC at 90°)

e. <EBF is an obtuse angle. (It is greater than 90° but less than 180°)

f. <ABC is a straight angle. (It measures 180°)

g. An angle bisector is ray BE

h. m<EBD = 36°

m<DBC = 108°

m<EBD + m<DBC = m<EBC (angle addition postulate)

36 + 108 =  m<EBC (Substitution)

144° = m<EBC

m<EBC = 144°

i. m<EBF = 117°

m<ABE + m<ABF = m<EBF (angle addition postulate)

m<ABE + 90° = 117° (Substitution)

m<ABE = 117 - 90

m<ABE = 27°

2. m<MKL = 83°,

m<JKL = 127°,

m<JKM = (9x - 10)°

m<JKM + m<MKL = m<JKL (angle addition postulate)

(9x - 10)° + 83° = 127° (substitution)

Solve for x

9x - 10 + 83 = 127

9x + 73 = 127

9x + 73 - 73 = 127 - 73

9x = 54

9x/9 = 54/9

x = 6

3. m<EFH = (5x + 1)°

m<HFG = 62

m<EFG = (18x + 11)

m<EFH + m<HFG = m<EFG (angle addition postulate)

5x + 1 + 62 = 18x + 11 (substitution)

5x + 63 = 18x + 11

5x - 18x = -63 + 11

-13x = -52

-13x/-13 = -52/-13

x = 4

m<EFH = (5x + 1)°

Plug in the value of x

m<EFH = 5(4) + 1 = 21°

m<EFG = (18x + 11)

Plug in the value of x

m<EFG = 18(4) + 11 = 72 + 11

m<EFG = 83°

The measure of an angle, that forms a known larger angle with another

known angle can be determined by angle addition postulate.

Correct responses:

1. a) Point B

b) [tex]\overrightarrow{BD}[/tex] and [tex]\overrightarrow{BC}[/tex]

c) ∠EBD

d) ∠FBC = Right angle

e) ∠EBF = An obtuse angle

f) ∠ABC = Straight angle

g)  [tex]\underline{\overrightarrow{EB}}[/tex]

h) m∠EBC = 180°

i) 36°

2)  x = 6°

3) x = 4°

Methods by which the above values are obtained

a) The vertex of an angle is the point where the lines forming the angles meet.

  • The vertex of the angle ∠4 = Point B

b) The sides of an angle are the rays that form the angle.

  • The sides of ∠1 = [tex]\underline{\overrightarrow{BC} \ and \ \overrightarrow{BD}}[/tex]

c) The name of an angle can be given by the three points of the angle

Therefore;

  • Another name of angle ∠5 is ∠EBD

d) Given that [tex]\overrightarrow{BF}[/tex] ⊥ [tex]\overleftrightarrow{AC}[/tex], we have;

  • ∠FBC = 90° = Right angle

e) ∠EBF = An obtuse angle

f) ∠ABC = 180° = Straight angle

g) Given that by symbol for equal angles in the diagram, we have;

∠EBD = ∠ABE

Therefore, segment [tex]\mathbf{\overrightarrow{EB}}[/tex] bisects ∠ABD

Which gives;

  • An angle bisector is [tex]\underline{\overrightarrow{EB}}[/tex]

h) m∠EBD = 36°, m∠DBC = 108°

m∠EBC = m∠ABE + m∠EBD + m∠DBC  (angle addition property)

m∠EBC = m∠EBD + m∠EBD + m∠DBC (substitution property)

Therefore;

  • m∠EBC = 36° + 36° + 108° = 180°

i) m∠EBF = 117°

m∠EBF = m∠ABE + m∠ABF

m∠ABF = m∠FBC = 90°

Therefore;

117° = m∠ABE + 90°

  • m∠ABE = 117° - 90° = 27°

2. Given:

m∠MKL = 83°, m∠JKL = 127°, m∠JKM = (9·x - 10)°

Required:

The value of x

Solution:

m∠JKL = m∠MKL + m∠JKM

Which by plugging in the values gives;

127° = 83° + (9·x - 10)°

127° - 83° =  44° = (9·x - 10)°

44° + 10° = 54° = 9·x

[tex]x = \dfrac{54 ^{\circ}}{9} = \mathbf{6^{\circ}}[/tex]

  • x = 6°

3. m∠EFH = (5·x + 1)°

m∠HFG = 62°

m∠EFG = (18·x + 11)°

By angle addition property, we have;

m∠EFG = m∠EFH + m∠HFG

Therefore;

18·x + 11 = 5·x + 1 + 62

18·x - 5·x = 62 + 1 - 11 = 52

13·x = 52

[tex]x = \dfrac{52^{\circ}}{13} = \mathbf{4^{\circ}}[/tex]

  • x = 4°

Learn more about angle addition property here:

https://brainly.com/question/11452422