Suppose a 20.0 g gold bar at 35.0°C absorbs 70.0 calories of heat energy. Given that the specific heat of gold is 0.0310 cal/g °C, what is the final
temperature of the gold bar?

Respuesta :

We know, change in temperature is given by :

[tex]T_2-T_1=\dfrac{q}{mC_p(Gold)}[/tex]

Putting all given values, we get :

[tex]T_2-T_1=\dfrac{70\ cal}{20\ g\times 0.0310\ cal/g^o\ C}\\\\T_2-T_1=112.90^oC\\\\T_2-35^oC=112.90^oC\\\\T_2=(112.90+35)^oC\\\\T_2=147.9^oC[/tex]

Hence, this is the required solution.