Respuesta :

Answer:

c is 30.

The angles, from left to right, are:

66, 94, and 20.

Step-by-step explanation:

The three angles form a straight angle. In other words, they sum to 180. So, we can write the following equation:

[tex](2c+6)+(3c+4)+(\frac{1}{2}c+5)=180[/tex]

Let's solve for c. Combine like terms:

[tex](2c+3c+0.5c)+(6+4+5)=180[/tex]

Add:

[tex]5.5c+15=180[/tex]

Subtract 15 from both sides:

[tex]5.5c=165[/tex]

Divide both sides by 5.5:

[tex]c=30[/tex]

So, the value of c is 30.

Now, substitute it into each of the angles to find their respective measures.

Left-Most Angle:

We have:

[tex]2c+6[/tex]

Substitute 30 for c. This yields:

[tex]=2(30)+6[/tex]

Multiply and add:

[tex]=60+6=66[/tex]

Middle Angle:

We have:

[tex]3c+4[/tex]

Substitute 30 for c:

[tex]=3(30)+4[/tex]

Multiply and add:

[tex]=90+4=94[/tex]

Right-Most Angle:

We have:

[tex]\frac{1}{2}c+5[/tex]

Substitute 30 for c:

[tex]=\frac{1}{2}(30)+5[/tex]

Multiply and add:

[tex]=15+5=20[/tex]

So, our angles, from left to right, are: 66, 94, and 20.

And the value of c is 30.

And we're done!