Respuesta :

Answer:

[tex]\huge\boxed{\sqrt[9]{3}}[/tex]

Step-by-step explanation:

In order to convert the expression [tex](3^{\frac{2}{3}})^{\frac{1}{6}}[/tex] into a radical, we need to simplify it down first.

Using exponent rules, we know that [tex](a^b)^c[/tex] can be simplified to [tex]a^{b\cdot c}[/tex].

Therefore we can say that  [tex](3^{\frac{2}{3}})^{\frac{1}{6}}[/tex] is the same as [tex]3^{\frac{2}{3} \cdot \frac{1}{6}}[/tex].

[tex]\frac{2}{3} \cdot \frac{1}{6} = \frac{2}{18} = \frac{1}{9}[/tex]

So we have [tex]3^{\frac{1}{9}}[/tex].

When we have a number to a fraction power, it's the same thing as taking the denominator root of the base to the numerator power.

Basically:

If we have [tex]2^{\frac{3}{4}}[/tex]:

We'll take the denominator root (the denominator is 4) of the base (2):

[tex]\sqrt[4]{2}[/tex]

But inside the radical, we raise the base to the numerator (3) power.

[tex]\sqrt[4]{2^3}[/tex]

Same logic for  [tex]3^{\frac{1}{9}}[/tex]

[tex]\sqrt[9]{3^1}[/tex]

[tex]3^1[/tex] is the same as 3.

[tex]\sqrt[9]{3}[/tex]

Hope this helped!