Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s). Points A and B are the endpoints of an arc of a circle. Chords are drawn from the two endpoints to a third point, C, on the circle. Given m AB =64° and ABC=73° , mACB=.......° and mAC=....°

Type the correct answer in each box Use numerals instead of words If necessary use for the fraction bars Points A and B are the endpoints of an arc of a circle class=

Respuesta :

Inscribed angles are formed when two chords have 1 common endpoint. The measure of [tex]\angle ACB[/tex] and [tex]\overset{\huge\frown}{AC}[/tex]  are:

[tex]\angle ACB = 32^o[/tex]

[tex]\overset{\huge\frown}{AC} = 146^o[/tex]

Given that:

[tex]\overset{\huge\frown}{AB} = 64^o[/tex]

[tex]\angle ABC = 73^o[/tex]

See attachment

First, we calculate [tex]\angle ACB[/tex] using:

[tex]\angle ACB = \frac{1}{2} \times \overset{\huge\frown}{AB}[/tex] ----- An inscribed angle is half the arc it intercepts

So, we have:

[tex]\angle ACB = \frac{1}{2} \times 64^o[/tex]

[tex]\angle ACB = 32^o[/tex]

Using the same theorem, we calculate [tex]\overset{\huge\frown}{AC}[/tex] as follows:

[tex]\angle ABC = \frac{1}{2} \times \overset{\huge\frown}{AC}[/tex]

So, we have:

[tex]73^o = \frac{1}{2} \times \overset{\huge\frown}{AC}[/tex]

Multiply both sides by 2

[tex]2 \times 73^o = 2 \times \frac{1}{2} \times \overset{\huge\frown}{AC}[/tex]

[tex]2 \times 73^o =\overset{\huge\frown}{AC}[/tex]

[tex]146^o =\overset{\huge\frown}{AC}[/tex]

Hence:

[tex]\overset{\huge\frown}{AC} = 146^o[/tex]

Read more about inscribed angles at:

https://brainly.com/question/15899344

Ver imagen MrRoyal

Answer:

your correct answers are 32 and 146

Step-by-step explanation:

to get 32, divide 64 by 1/2

To get 146, multiply 73 by 2

Hope I helped, got it right on test:)