Inscribed angles are formed when two chords have 1 common endpoint. The measure of [tex]\angle ACB[/tex] and [tex]\overset{\huge\frown}{AC}[/tex] are:
[tex]\angle ACB = 32^o[/tex]
[tex]\overset{\huge\frown}{AC} = 146^o[/tex]
Given that:
[tex]\overset{\huge\frown}{AB} = 64^o[/tex]
[tex]\angle ABC = 73^o[/tex]
See attachment
First, we calculate [tex]\angle ACB[/tex] using:
[tex]\angle ACB = \frac{1}{2} \times \overset{\huge\frown}{AB}[/tex] ----- An inscribed angle is half the arc it intercepts
So, we have:
[tex]\angle ACB = \frac{1}{2} \times 64^o[/tex]
[tex]\angle ACB = 32^o[/tex]
Using the same theorem, we calculate [tex]\overset{\huge\frown}{AC}[/tex] as follows:
[tex]\angle ABC = \frac{1}{2} \times \overset{\huge\frown}{AC}[/tex]
So, we have:
[tex]73^o = \frac{1}{2} \times \overset{\huge\frown}{AC}[/tex]
Multiply both sides by 2
[tex]2 \times 73^o = 2 \times \frac{1}{2} \times \overset{\huge\frown}{AC}[/tex]
[tex]2 \times 73^o =\overset{\huge\frown}{AC}[/tex]
[tex]146^o =\overset{\huge\frown}{AC}[/tex]
Hence:
[tex]\overset{\huge\frown}{AC} = 146^o[/tex]
Read more about inscribed angles at:
https://brainly.com/question/15899344