Respuesta :

Answer:

x ≈ 22.1°

Step-by-step explanation:

Using the law of cosines, then

cosC = [tex]\frac{a^2+b^2-c^2}{2bc}[/tex]

with a = 19, b = 14, c = 8 and C = x, thus

cos x = [tex]\frac{19^2+14^2-8^2}{2(19)(14)}[/tex]

         = [tex]\frac{361+196-64}{532}[/tex]

         = [tex]\frac{493}{532}[/tex], thus

x = [tex]cos^{-1}[/tex] ([tex]\frac{493}{532}[/tex] ) ≈ 22.1° ( to the nearest tenth )