Calculus 2 master needed; stuck on evaluating the integral please show steps [tex]\int {sec(x/2)tan^5(x/2)} \, dx[/tex] I am thinking that we want to split up the tan^5, making [tex]\int {sec(x/2)tan^2 tan^3(x/2)} \, dx[/tex] and then [tex]\int {sec(x/2)*sec^2x-1* tan^3(x/2)} \, dx[/tex] but I am not sure this is correct. Can anyone help? The thing I am unsure of is that tan^3 is still odd, so would we do the same thing again and factor so we will be left with just tanx?

Respuesta :

Answer:

[tex]\displaystyle \int \sec\left(\frac{x}{2}\right)\tan^5\left(\frac{x}{2}\right)dx=\frac{2\sec^5\left(\dfrac{x}{2}\right)}{5}-\frac{4\sec^3\left(\dfrac{x}{2}\right)}{3}+2\sec\left(\frac{x}{2}\right)+C[/tex]

Step-by-step explanation:

We want to find the integral:

[tex]\displaystyle \int \sec\left(\frac{x}{2}\right)\tan^5\left({\frac{x}{2}\right)dx[/tex]

First, perform the substitution y = x / 2. This yields:

[tex]\displaystyle dy = \frac{1}{2} \, dx \Rightarrow dx = 2\, dy[/tex]

Hence, the integral becomes;

[tex]\displaystyle =2\int \sec y\tan^5 y \, dy[/tex]

Next, as you had done, let's expand the tangent term but to the fourth:

[tex]\displaystyle =2\int \sec y\tan^4 y\tan y\, dy[/tex]

Recall that:

[tex]\tan^2(y)=\sec^2(y)-1[/tex]

Hence:

[tex]\displaystyle =2\int \sec y(\sec^2 y-1)^2\tan y\, dy[/tex]

We can use substitution once more. This time, let u = sec(y). Hence:

[tex]\displaystyle du = \sec y \tan y \, dy[/tex]

Rewrite:

[tex]\displaystyle =2\int \left((\sec^2y-1)^2\right)\left(\sec y \tan y\right)dy[/tex]

Therefore:

[tex]\displaystyle = 2\int (u^2 - 1)^2\, du[/tex]

Expand:

[tex]\displaystyle =2\int u^4-2u^2+1\, du[/tex]

Reverse Power Rule:

[tex]\displaystyle = 2\left(\frac{u^5}{5} - \frac{2u^3}{3} + u\right) + C[/tex]

Simplify:

[tex]\displaystyle = \frac{2u^5}{5} - \frac{4u^3}{3} + 2u + C[/tex]

Back-substitute:

[tex]\displaystyle = \frac{2\sec^5 y }{5}-\frac{4\sec^3 y}{3}+2\sec y+C[/tex]

Back-substitute:

[tex]\displaystyle =\frac{2\sec^5\left(\dfrac{x}{2}\right)}{5}-\frac{4\sec^3\left(\dfrac{x}{2}\right)}{3}+2\sec \left(\frac{x}{2}\right)+C[/tex]

Therefore:

[tex]\displaystyle \int \sec\left(\frac{x}{2}\right)\tan^5\left(\frac{x}{2}\right)dx=\frac{2\sec^5\left(\dfrac{x}{2}\right)}{5}-\frac{4\sec^3\left(\dfrac{x}{2}\right)}{3}+2\sec\left(\frac{x}{2}\right)+C[/tex]

Answer:

= 2 (sec (x/2) - 2sec³(x/2) +  sec⁵(x/2) ) + C

                              3                     5

Step-by-step explanation:

∫sec(x/2) tan⁵(x/2) dx

apply u substitute u = x/2

= ∫sec(u) tan⁵(u) * 2du

= 2 *  ∫sec(u) tan⁴(u) tan(u) du

= 2 *  ∫sec(u) (tan²(u))² tan(u) du

= 2 *  ∫sec(u) (-1 + sec²(u))² tan(u) du

apply u substitute v = sec(u)

= 2 * ∫(-1 + v²)² dv

expand

= 2 * ∫1 - 2v² + v⁴ dv

sum

= 2 (v - 2v³ + v⁵ )

             3      5

substitute it back

= 2 (sec (x/2) - 2sec³(x/2) +  sec⁵(x/2) )

                              3                     5

add constant to the solution.

= 2 (sec (x/2) - 2sec³(x/2) +  sec⁵(x/2) ) + C

                              3                     5