Calculus 2 master needed; evaluate the integral PLEASE SHOW STEPS IF IM WRONG [tex]\int{sin^3x/\sqrt{cosx} } \, dx[/tex] I split off the sin^3 so i can use the pythag identity and allows for u substitution u=cosx du=-sinx dx -du=sin dx [tex]\int{1-u^2/\sqrt{u}*-du }[/tex] I move the negative towards the outside of the integral. then i divide the terms by sqroot 2||| [tex]-\int{(1/\sqrt{u} - u^2/\sqrt{u} )} \, du[/tex] I eventually get to a=1/2 b =5/2 [tex]-2{cos^a x +2/5cos^b} \, dx[/tex] did I miss anything? Or is this the final answer?

Respuesta :

Answer:

Your process is indeed correct!

The full solution is:

[tex]\displaystyle \int\frac{\sin ^3 x}{\sqrt{\cos x}}\, dx= \frac{2}{5} \cos^{{}^{5}\!/\!{}_{2}} x - 2\cos ^{{}^{1}\!/\!{}_{2}}x + C[/tex]

Step-by-step explanation:

We want to evaluate the integral:

[tex]\displaystyle \int \frac{\sin^3(x)}{\sqrt{\cos(x)}}\, dx[/tex]

As you had done, we can rewrite our integral as:

[tex]\displaystyle =\int \frac{\sin(x)(\sin^2(x))}{\sqrt{\cos(x)}}\, dx[/tex]

Using the Pythagorean Identity, this is:

[tex]\displaystyle =\int \frac{\sin(x)(1-\cos^2(x))}{\sqrt{\cos(x)}}\, dx[/tex]

Now, we can make a substitution. Let u = cos(x). Then:

[tex]\displaystyle du = - \sin x \, dx[/tex]

Substitute:

[tex]\displaystyle = \int\frac{1-u^2}{\sqrt{u}} \, \left(- du\right)[/tex]

Simplify:

[tex]\displaystyle = -\int \frac{1}{\sqrt{u}} - \frac{u^2}{\sqrt{u}}\, du[/tex]

Rewrite:

[tex]\displaystyle = -\int u^{{}^{-1}\!/\!{}_{2}} - u^{{}^{3}\!/\!{}_{2}}\, du[/tex]

By the Reverse Power Rule:

[tex]\displaystyle = -\left(2u^{{}^{1}\!/\!{}_{2}} - \frac{2}{5} u^{{}^{5}\!/\!{}_{2}}\right) + C[/tex]

Simplify:

[tex]\displaystyle = \frac{2}{5} u^{{}^{5}\!/\!{}_{2}}-2u^{{}^{1}\!/\!{}_{2}} + C[/tex]

Back-substitute:

[tex]\displaystyle = \frac{2}{5} \cos^{{}^{5}\!/\!{}_{2}} x - 2\cos ^{{}^{1}\!/\!{}_{2}}x + C[/tex]

Answer:

=  - 2 [tex]\sqrt{cos(x)}[/tex] + 2 cos⁵/₂ (x)  + C

                          5

Step-by-step explanation:

sin³ (x)    dx

  [tex]\sqrt{cos(x)}[/tex]

= ∫ sin² (x) sin (x)    dx

   [tex]\sqrt{cos(x)}[/tex]

= ∫ (1 - cos² (x) sin (x)  dx

   [tex]\sqrt{cos(x)}[/tex]

= ∫ - 1 - u²   du

        √u

= ∫ -   1    +  u³/₂   du

        √u

= - ∫   1    du  +  ∫ u³/₂   du

        √u

substitute it back

=  - 2 √u + 2 cos⁵/₂ (x)

                 5

add constant, therefore

=  - 2 [tex]\sqrt{cos(x)}[/tex] + 2 cos⁵/₂ (x)  + C

                         5