Respuesta :

Answer:

129.1 square units

Step-by-step explanation:

First, let's find the area of the rectangle. We can use the formula below.

[tex]a=lw[/tex]

where [tex]l[/tex] is the length and [tex]w[/tex] is the width.

The length of the rectangle is 13 and the width is 8.

[tex]l=13\\w=8[/tex]

Substitute the values into the formula.

[tex]a=13*8[/tex]

[tex]a=104[/tex]

Next, let's find the area of the semicircle. We can use the formula below.

[tex]a=\frac{1}{2} *\pi r^2[/tex]

First, find the radius. The radius is half of the diameter, and the diameter is 8.

⇒ r= d/2

⇒ r= 8/2

⇒ r= 4

[tex]a=\frac{1}{2} *\pi (4)^2[/tex]

Evaluate the exponent.

⇒ 4² = 4*4 = 16

[tex]a=\frac{1}{2} *\pi *16[/tex]

Multiply pi and 16.

[tex]a=\frac{1}{2} *50.2654825[/tex]

Multiply.

[tex]a=25.1327412[/tex]

Finally, find the area of the figure.

Add the area of the rectangle (104) and the area of the semicircle (25.1327412)

[tex]104+25.1327412[/tex]

[tex]129.132741[/tex]

Round to the nearest tenth. The 3 in the hundredth place tells us to leave the 1 in the tenth place.

[tex]129.1[/tex]

The area of the figure is about 129.1 (square units).