WILL GIVE BRAINLIEST! Prove that a quadrilateral ABCD with vertices A(–1, –2), B( 2, –5), C(1, –2), and D( –2, 1) is a parallelogram. Find the point of intersection of the diagonals of parallelogram ABCD. Provide your complete solutions and proofs in your paper homework and enter the numeric answers online.

Respuesta :

Answer:

Step-by-step explanation:

To prove a quadrilateral a parallelogram we prove,

1). Length of opposite sides are equal.

2). Slopes of the opposite sides are same.

Length of AB = [tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

                      = [tex]\sqrt{(2+1)^2+(-5+2)^2}[/tex]

                      = [tex]3\sqrt{2}[/tex]

Length of BC = [tex]\sqrt{(2-1)^2+(-5+2)^2}[/tex]

                      = [tex]\sqrt{10}[/tex]

Length of CD = [tex]\sqrt{(1+2)^2+(-2-1)^2}[/tex]

                      = [tex]3\sqrt{2}[/tex]

Length of AD = [tex]\sqrt{(-1+2)^2+(-2-1)^2}[/tex]

                      = [tex]\sqrt{10}[/tex]

Therefore, AB = CD and BC = AD (Opposite sides are equal in length)

Slope of AB = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]

                    = [tex]\frac{-5+2}{2+1}[/tex]

                    = -1

Slope of BC = [tex]\frac{-5+2}{2-1}[/tex]

                    = -3

Slope of CD = [tex]\frac{1+2}{-2-1}[/tex]

                    = -1

Slope of AD = [tex]\frac{-2-1}{-1+2}[/tex]

                    = -3

Slope of AB = slope of CD and slope of BC = slope AD

Therefore, AB║CD and BC║AD

Hence ABCD is a parallelogram

Ver imagen eudora