Answer:
[tex]f^{-1}(x)=\frac{x+1}{6}[/tex]
Step-by-step explanation:
So we have the function:
[tex]f(x)=6x-1[/tex]
To find the inverse function, switch x and f(x), change f(x) to f⁻¹(x), and solve for f⁻¹(x). Therefore:
[tex]f(x)=6x-1[/tex]
Switch:
[tex]x=6f^{-1}(x)-1[/tex]
Add 1 to both sides:
[tex]x+1=6f^{-1}(x)[/tex]
Divide both sides by 6:
[tex]f^{-1}(x)=\frac{x+1}{6}[/tex]
And that's our answer :)