Respuesta :

Answer:

A) [tex]y=-5x-4[/tex]

B) [tex]y=-5x+4[/tex]

C) [tex]y=\frac{x-4}{5}[/tex]

Step-by-step explanation:

So we have the equation:

[tex]y=5x+4[/tex]

Let's write this in function notation. Thus:

[tex]y=f(x)=5x+4[/tex]

A)

To flip a function over the x-axis, multiply the function by -1. Thus:

[tex]f(x)=5x+4\\-(f(x))=-(5x+4)[/tex]

Simplify:

[tex]-f(x)=-5x-4[/tex]

B) To flip a function over the y-axis, change the variable x to -x. Thus:

[tex]f(x)=5x+4\\f(-x)=5(-x)+4[/tex]

Simplify:

[tex]f(-x)=-5x+4[/tex]

C) A reflection over the line y=x is synonymous with finding the inverse of the function.

To find the inverse, switch x and f(x) and solve for f(x):

[tex]f(x)=5x+4[/tex]

Switch:

[tex]x=5f^{-1}(x)+4[/tex]

Subtract 4 from both sides:

[tex]x-4=5f^{-1}(x)[/tex]

Divide both sides by 5:

[tex]f^{-1}(x)=\frac{x-4}{5}[/tex]

And we're done :)