Answer:
[tex]54^\circ[/tex]
Step-by-step explanation:
Given :
[tex]m\angle A=(2x+10)^{\circ}[/tex]
[tex]m\angle B=(3x+15)^{\circ}[/tex]
And angles [tex]\angle A[/tex] and [tex]\angle B[/tex] are complementary angles.
To find:
The measure of [tex]\angle B[/tex].
Solution:
First of all, let us learn about complementary angles.
Complementary angles are the angles whose sum is equal to [tex]90^\circ[/tex].
And we are given that angles [tex]\angle A[/tex] and [tex]\angle B[/tex] are complementary angles.
Therefore [tex]\angle A[/tex] + [tex]\angle B[/tex] = [tex]90^\circ[/tex]
[tex]\Rightarrow 2x+10+3x+15=90\\\Rightarrow 5x+25=90\\\Rightarrow 5x=65\\\Rightarrow x =13[/tex]
Putting the value in [tex]\angle B[/tex].
[tex]m\angle B=(3\times 13+15)^{\circ} = 54^\circ[/tex]
Therefore, the answer is [tex]\bold{\angle B = 54^\circ}[/tex]