Is it true that ƒ −(g − h) = (ƒ − g) − h? Explain why you believe the equation is true or provide a counterexample to show that it is not.

Respuesta :

Answer:

The expression is false

Step-by-step explanation:

Given

[tex]f - (g - h) = (f - g) - h[/tex]

Required

True or False

To determine if the expression is true or false, we need to simplify both sides of the equation

[tex]f - (g - h) = (f - g) - h[/tex]

Start by opening the bracket on the right hand side

[tex]f - (g - h) = f - g - h[/tex]

Then open the bracket on the left

[tex]f - g + h = f - g - h[/tex]

Subtract f - g from both sides

[tex]f - g - (f - g) + h = f - g - (f - g) + h[/tex]

[tex]f - g - f + g + h = f - g - f + g - h[/tex]

[tex]f - f - g + g + h = f - f - g + g - h[/tex]

[tex]h \neq -h[/tex]

Hence;

The statement is false

To further check;

Assume f = 5; g = 4 and h = 3

[tex]f - (g - h) = (f - g) - h[/tex] becomes

[tex]5 - (4 - 3) = (5 - 4) - 3[/tex]

[tex]5 - 4 + 3 = 5 - 4 - 3[/tex]

[tex]2 \neq -2[/tex]