Answer:
[tex]x=\frac{55}{3},\:y=\frac{22}{3}[/tex]
Step-by-step explanation:
Solve by Substitution ;
[tex]\begin{bmatrix}x+2y=33\\ x-y=11\end{bmatrix}\\\\\mathrm{Isolate}\:x\:\mathrm{for}\:x+2y=33:\quad x=33-2y\\\\\mathrm{Subsititute\:}x=33-2y\\\\\begin{bmatrix}33-2y-y=11\end{bmatrix}\\\\Simplify\\\begin{bmatrix}33-3y=11\end{bmatrix}\\\\\mathrm{Isolate}\:y\:\mathrm{for}\:33-3y=11:\quad y=\frac{22}{3}\\\mathrm{For\:}x=33-2y\\\\\mathrm{Subsititute\:}y=\frac{22}{3}\\x=33-2\times\frac{22}{3}\\\\x=\frac{55}{3}\\\\x=\frac{55}{3},\:y=\frac{22}{3}[/tex]