Respuesta :
Answer:
The value is [tex]\theta_2 = 20.322^o[/tex]
Explanation:
From the question we are told that
The angle of the first order maximum is [tex]\theta _1 = 10.0^o[/tex]
Generally the condition for constructive interference is
[tex]dsin\theta = n \lambda[/tex]
Here d is the separation between the slit ,
n is the order of maxima with values n = 1, 2 , 3 ... for first , second , third ... order of maxima
Now for first order of maximum
[tex]dsin\theta_1 = \lambda \ \ ... \ \ ( 1)[/tex]
=> [tex]dsin(10) = \lambda \ \ ... \ \ ( 1)[/tex]
Now for second order of maximum
[tex]dsin\theta = 2\lambda \ \ ... \ \ ( 2)[/tex]
dividing equation 1 by 2
[tex]\frac{d sin (10)}{d sin (\theta_2 )} = \frac{\lambda}{2\lambda}[/tex]
[tex]\frac{ sin (10)}{ sin (\theta_2 )} = \frac{1}{2}[/tex]
=> [tex]2sin(10) = sin (\theta_2 )[/tex]
=> [tex]0.3473 = sin(\theta_2)[/tex]
=> [tex]\theta_2 = sin^{-1} [0.3473][/tex]
=> [tex]\theta_2 = 20.322^o[/tex]