Answer:
See below
Step-by-step explanation:
Q1. when 3b-4a is evaluated for a=0.5 and b=-0.333333333. what is the answer?
[tex]3b-4a, a=0.5 \text{ and } b=-0.333333...[/tex]
Once
[tex]$-0.3333333... = -\frac{1}{3} \text{ and } 0.5=\frac{1}{2} $[/tex]
[tex]$3\cdot \left(-\frac{1}{3}\right) - 4 \cdot \frac{1}{2} = -1 - 2 =\boxed{-3}$[/tex]
Q2. solution for equation
[tex]5(x+1)-3(3x-1)=15(x-2)[/tex]
[tex]5x+5-9x+3 = 15x-30[/tex]
[tex]-4x+8 = 15x-30[/tex]
[tex]38 = 19x[/tex]
[tex]$x=\frac{38}{19} = \boxed{2}$[/tex]
Q3. which is not equivalent to [tex]4(2x-1)=3(x+1)-2[/tex]
Just try all the values.
None of them makes the equation equivalent.
[tex]8x-4=3x+1-2[/tex]
[tex]5x=5[/tex]
[tex]\boxed{x=1}[/tex]
Q4. if a<0 and b<0 which of the following is not positive
B. a+b
[tex]a<0 \implies \text{a is negative}[/tex]
[tex]b<0 \implies \text{b is negative}[/tex]
[tex]a \cdot b \implies \text{positive value}[/tex]
[tex]$\frac{a}{b} \implies \text{positive number}$[/tex]
[tex]a:b \text{ is just another notation for division}[/tex]
[tex]a+b \implies \text{negative number}[/tex]