contestada

The effective spring constant describing the potential energy of the HBr molecule is 410 N/m and that for the NO molecule is 1530 N/m.A) Calculate the minimum amplitude of vibration for the NO molecule.
B) Calculate the minimum amplitude of vibration for the HCl molecule.

Respuesta :

Answer:

a. the minimum amplitude of vibration for the NO molecule A [tex]\simeq[/tex] 4.9378 pm

b. the minimum amplitude of vibration for the HCl molecule A [tex]\simeq[/tex] 10.9336 pm

Explanation:

Given that:

The effective spring constant describing the potential energy of the HBr molecule is 410 N/m

The effective spring constant describing the potential energy of the NO molecule is 1530 N/m

To calculate the minimum amplitude of vibration for the NO molecule, we use the formula:

[tex]\dfrac{1}{2}kA^2= \dfrac{1}{2}hf[/tex]

[tex]kA^2= hf[/tex]

[tex]A^2= \dfrac{hf}{k}[/tex]

[tex]A = \sqrt{\dfrac{hf}{k}}[/tex]

[tex]A = \sqrt{\dfrac{(6.626 \times 10^{-34} \ J. s ) ( 5.63 \times 10^{13} \ s^{-1})}{1530 \ N/m}}[/tex]

[tex]A = \sqrt{\dfrac{3.730438 \times 10^{-20} \ m}{1530 }[/tex]

[tex]A = \sqrt{2.43819477 \times 10^{-23}\ m[/tex]

[tex]A =4.93780799 \times 10^{-12} \ m[/tex]

A [tex]\simeq[/tex] 4.9378 pm

The effective spring constant describing the potential energy of the HCl molecule is 480 N/m

To calculate the minimum amplitude using the  same formula above, we have:

[tex]A = \sqrt{\dfrac{hf}{k}}[/tex]

[tex]A = \sqrt{\dfrac{(6.626 \times 10^{-34} \ J. s ) ( 8.66 \times 10^{13} \ s^{-1})}{480 \ N/m}}[/tex]

[tex]A = \sqrt{\dfrac{5.738116\times 10^{-20} \ m}{480 }[/tex]

[tex]A = \sqrt{1.19544083\times 10^{-22}\ m[/tex]

[tex]A = 1.09336217 \times 10^{-11} \ m[/tex]

[tex]A = 10.9336217 \times 10^{-12} \ m[/tex]

A [tex]\simeq[/tex] 10.9336 pm